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We study a population model with two age classes which describes the growth
of biennial plants in a randomly fluctuating environment. A fraction of the old-
est age class delays its flowering each year. Using the theory of random
matrix products we show that delay of flowering increases the growthrate of

the population. We investigate the dependence of the optimal flowering fraction
on the model parameters.

Note. This paper is dedicated to Prof. H.A. Lauwerier on the occasion of his
65th birthday.

1. INTRODUCTION

Strictly biennial plants lead a vegetative existence in the first year, flower in
the second year and then die. In natural populations of ‘bienmals’ often a
large fraction of the plants delays its tlowe:

_ ing past the second year: the non-
reproductive period of a lineage may span 2-5 years. This 1s surprising because
classical I .

fe-history theory predicts that a bienmal has to produce four times
as many seeds as a perennial and twice as many seeds as an annual plant to
ain the same rate of increase. This conclusion was reached by assuming a
rministic (nonchan 3 g) environment.
[his picture changes completely when the population grows in a randomly
fluctuating environment. Simulation studies by Klinkhamer & De Jong [I1]
indicated that some delay of flowering is profitable if the per capita reproduc-
tive success varies strongly over the years. These authors used the following
discrete-time model pertaining to the case of density-independent population

growth: .
Nl,t+l B 0 f‘Pt Nl,t — 012 11
Norvr| |8 (1—=f)s| [Na: E= 504 (1.1

where ¢ is a time just before flowering, and

N, the number of individuals which are one year old at time #;
N,, the number of individuals older than one year at time Z
S survival rate of individuals older than one year, O0<<s<1;

f fraction of individuals older than one year that flowers in a given year,
O0<f<l;
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Huctuating number of offspru

on the behaviour of

run properties of the solution of (1.1) depend
| [0, where M, is the two-by-two

matrix in Below we give an informal presentation of the results which
have been obtained for this m in [2] by using the theory of products of
random matrices (for the latter see e.g. [3,4]). In particular we will discuss the
existence of an nal flowering fraction, f,,, for our model and discuss how

the value of f,,, depends on the model parameters s,p and . We do not g0
into the question as to how the delayed flowering is brought about in natural
populations. For a more extensive discussion of this pomnt and other biologi-
cally relevant questions we refer to [5].

2. AVERAGE BEHAVIOUR IS NOT TYPICAL BEHAVIOUR
{he aim of this paragraph 1s to define the concept of ‘optimal flowerin g frac-

tion’ and to bring out the difference between determini

istic and stochastic
environments with regard to the proper definition of this concept.
First we will look at the deterministic case. So let us assume that @, 1n (1.1)

has a constant value @ (which will later be identified with the average value of
@, 1n the stochastic case).

We define the optimal flowering fraction Jopr 1 this
case as the value of f for which the total population N,:=N,,+N,, has a
maximal growthrate y,, defined by

(2.1)

It 15 easy to see that g is equal to InAg(f), where A, is the maxi
of the matrix M, with ¢, =@; A is given by

M(f) = Fls(A—f)+ (s2(1— )P +4fFs)12] (2.2)

If we assume that without delayed flowering the population is increasing, 1.e.
Ao(1)=(ps)"*>1, then delayed flowering is not profitable since A (or o) is
an increasing function of f for @s>1 (in fact for $>s). As an example we
have plotted py as a function of f for the parameter values s =0.9, =2 In
Figure 1 (broken line).

If we now turn to the case of a random environment our first difficulty is the
choice of the optimality or ‘fitness’ criterion to be used in defining an optimal

mal eigenvalue
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FIGURE 1. Geometric rate y (solid line) and arithn
vs. the flowering fraction f; s =0.9; p=2, p=5.

etic growthrate ug

flowering fraction. There are at least two intuitively plausible ways to general-
ize the maximization of (2.1). First, we may maximize the growthrate of the
average population, defined as

u = lim — In E(N)). (2.3)

t—o0 1

In fact, p=po =InAy with A¢ given by (2.2), where now ¢ 1s the average of @;.
A second possibility is to consider the average growthrate (also called the
upper Lyapunov exponent) defined by

(2.4)

will be strictly larger than the geometric
growthrate v.

[he theory of random matrix products tells us that a typical realization R
characterized by y, not by p. More precisely, under some mild conditions
(which are satisfied 1n our case),

1im-1-1nN, = vy (2.5)

[ —> Q0 t

for almost all sequences of matrices {M;} and any initial value Ny=%40. Thus,
although eventually each population growing according to (1.1) attamns a
growthrate y, there are at each given time 7, no matter how large, always
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, due to a rare suc-
It 15 b ecause of

populations which have been gro
these excep Emn

aﬂm‘ . Eﬂ f act

First we 1 woduce the followin

Xy — (Nl,ta N2,r)s (31)
|‘xf| — Nl' — N1,1+N2,h (32)
X, = x, /x| (3.3)

In biological terms: x, is the population vector, |x,| the total population and X,
the ‘age-st ucture’. So X, 1s defined on the simplex

= {x eR*: x; =0, x,=0, x;, +x;,=1). (3.4)
Every time the iteration (1.1) 1s appliec

we get a new population vector x, and
corresponding age-structure X,, see Figure 2. The sequence {X,;} constitutes a
Markov chain on the simplex C and the distribution of age-structures evolves
towards a unique stationary probability measure »(x), which 1s invariant with
respect to the common distribution u(M) of the matrices {M,}.

X =M M x
2 2 10

FIGURE 2. Iterates of the population vector x; and the age-structure x, under
the action of (1.1).
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In terms of the given measure p and
expression for the growths -

measure v the

(3.5)

(3.6)
(3.7)

n = flAA—f)s} . (3.8)

For the invariant measure expressed in the variable r we write »(1). Th
corresponding density (which exists) is denoted by 4 (7). By using the invan-
ance of A(7) under the action of (3.7) one can derive the integral equation

(7 + Dr

Y

7+ 1

dr (3.9)
T

h(r) = [h(r)g
0

where g(-) is the gamma distribution (1.2). The solution 1s

h(r) = K12~ (14+1) 92 (3.10)

where K 1s a normalization constant.
By using this result in (3.5) and performing some sin
resulting formula one ends up with the follow

plifications in the
ing expression for y=v(f),

7{1n(1+¢)}7““1(1—l—rr)""e””d'r

Y(f) = In{s(I-)}++—"""—"—"—7—+ (.11
f?aml(1+¢)“ae“ZTdT
0

z = ks(1—=f)*/f (3.12)
imiting values at the endpoints of the interval [0,1] are

7(0) = Ins, ¥(1) = 5{In(s/k)+¥a)) (3.13)

where Y(a)= I‘(a) 1s the digamma

the second term in the right hand side of (3.11) can be expressed in terms of
Kummer functions and derivatives thereof [2].

function. As a final remark we note that
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NAXITNUINM OCCUrs f or a val ue .ff;Pf e E €T ¢
F H‘SE we ca cuﬁme Y as a hmcmon of

merical ev a}uahon of the te gr S occurrn

ns a maximum for a value j;p ;<<1: delayed flowering 1s profitable

ding of the risk’)

(11) 'y< Ti for 0<f<1. In fact w(1)>0, ¥(1)<<0, so if f =1 the population will
almost surely go extinct whereas the average population increases indefi-
nitely!

(111) ad very steep decrease of y near f =1 1s observed (in fact [2]:

ey

= —o0): even a tiny amount of delayed flowering 1s advanta-

. The precise amount is not very crucial, as can be seen from the
all vanation of y in the region 0.557<50.9.

Of course the value of f,,, will depend on the parameters of the model, 1.e. on
s, a and k or, equivalently, on s, and '5 In Figure 3 we have plotted y as a

function of f for the values s =0.3,0.5,0.7, 0.9 with =2, p=5. The optimal
fraction f,, increases as s decreases. This 1s to be expected since a smaller sur-
vival probability has to be balanced by a larger amount of flowering.

In Figures 4 and 5 we show curves of y versus f for various values of ¢ and

¢ respectively, keeping the other parameters fixed. One observes that f,,

decreases as the average offspring number ¢ decreases or its variance @
increases. Hence 1if the average reproductive success i1s low or varies strongly
there 1s a strong environmental pressure on the population to delay its flower-
Ing.

Field studies of bienmials suggest that the model (1.1) 1s certainly inadequate
In many respects, see e.g. [5]. For example, no density dependence is assumed
and there 1s no advantage of delayed flowering through increased probability
of survival and increased seed production. Nevertheless, the prediction of the
simple model (1.1) that f,, 1s considerably smaller than unity for a wide range

of parameters i1s in agreement with the fact that only very few species are
strictly bienmal.
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(a) s =0.9; (b) s=0.7; (c)s=0.5; (d)s=0.3.
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FiGURE 4. Geometric growthrate vs. the flowering fraction (s =0.9, P =>5);
(a) p=1; (b) p=2; () =3.
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FIGURE 5. Geometric growthrate vs. the flowering fraction (s =0.9, p=2);
(a) p=1; (b) p=5; (c) p=8.
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